Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Stuart R. Batten* and Alexander R. Harris

School of Chemistry, PO Box 23, Monash University 3800, Australia

Correspondence e-mail:
stuart.batten@sci.monash.edu.au

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.058$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Tetraaquabis(pyridine-4-carboxylate- κN)nickel(II)

The title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, consists of Ni atoms coordinated to two trans pyridylcarboxylate ligands, coordinated through the N atoms, and four water ligands. The Ni atom lies on a centre of symmetry. Extensive inter-complex hydrogen bonding occurs between the water ligands and the carboxylate groups, resulting in a three-dimensional network.

Comment

Pyridinecarboxylate ligands have recently been used in the construction of novel coordination polymers with interesting microporous and non-linear optical properties (Lin et al., 1998; Evans, Xiong et al., 1999; Evans, Wang et al., 1999; Evans \& Lin, 2000). A feature of this class of bridging ligand is the presence of two different coordinating functionalities - a pyridyl group and a carboxylate group. The ligands also offer the possibility of participating in hydrogen-bonding networks if monodentate coordination occurs. We report here the structure of $\mathrm{Ni}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ (L is pyridine-4-carboxylate), (I), in which such a hydrogen-bonded network is found.

(I)

The structure of (I) is isomorphous with the previously reported manganese(II) (Hauptmann et al., 2000), iron(II) (Liu et al., 1999), cobalt(II) (Waizumi et al., 1998), copper(II) (Okabe et al., 1993; Waizumi et al., 1998), zinc(II) (Cingi et al., 1971) and cadmium(II) (Cingi et al., 1971) structures. It consists of mononuclear nickel complexes in which the metal ion is coordinated to the N atoms of two trans pyridine-4carboxylate ligands, and to four water ligands (Fig. 1). The octahedrally coordinated Ni atom (Table 1) lies on a centre of

Received 13 November 2000 Accepted 27 November 2000 Online 1 December 2000

Figure 1
Atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

Crystal packing in (I), showing the extensive hydrogen bonding between complexes.
symmetry. The carboxylate group of the ligand is twisted slightly from the plane of the pyridyl group [the angle between the two planes is $\left.13.93(8)^{\circ}\right]$.

Extensive hydrogen bonding between the water ligands and the uncoordinated carboxylate groups generates a complex three-dimensional network (Fig. 2). Each carboxylate O atom is hydrogen bonded to two separate water ligands (Table 2), and each water ligand hydrogen bonds to two separate carboxylates. Each complex is thus connected to six neighbours via $16 \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

The title compound was obtained from an aqueous solution containing nickel nitrate, sodium dicyanamide and pyridine-4carboxylic acid.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=374.98$
Triclinic, $P \overline{1}$
$a=6.2862$ (3) \AA
$b=6.8598$ (2) \AA
$c=9.2394$ (4) \AA
$\alpha=96.511(3)^{\circ}$
$\beta=104.929(2)^{\circ}$
$\gamma=113.692(3)^{\circ}{ }_{\circ}$
$V=341.77(2) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: by integra-
tion (XPREP; Siemens, 1994)
$T_{\text {min }}=0.835, T_{\text {max }}=0.940$
3694 measured reflections
1626 independent reflections

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.822 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 3694 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=1.468 \mathrm{~mm}^{-1}$
$T=123$ (2) K
Plate, blue
$0.18 \times 0.13 \times 0.05 \mathrm{~mm}$

1558 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-11 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0023 P)^{2}\right. \\
& \quad+0.1806 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.058$
$S=1.15$
1626 reflections
122 parameters
H atoms: see below

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{O} 1$	$2.0669(11)$	$\mathrm{Ni} 1-\mathrm{O} 2$	$2.0932(11)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.0891(13)$		
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	$91.90(5)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$90.76(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$93.24(5)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{O} 4^{\text {i }}$	1.00 (2)	1.64 (2)	2.634 (2)	177 (2)
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{O} 3^{\text {ii }}$	0.80 (2)	2.00 (3)	2.793 (2)	172 (2)
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 3^{\text {iii }}$	0.83 (3)	2.00 (3)	2.825 (2)	171 (2)
$\mathrm{O} 2-\mathrm{H} 22 \cdots \mathrm{O} 4^{\text {iv }}$	0.83 (3)	1.96 (3)	2.786 (2)	178 (3)

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1+x, 1+y, 1+z$; (iii) $1+x, y, 1+z$; (iv) $x, y, 1+z$.

All H atoms were observed in difference syntheses, however only those of the water ligands were allowed to refine freely.

Data collection: COLLECT (Hooft, 1998); cell refinement and data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The receipt of an ARC Postdoctoral Fellowship (to SRB) is gratefully acknowledged.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cingi, M. B., Manfredotti, A. G., Guastini, C., Musatti, A. \& Nardelli, M. (1971). Gazz. Chim. Ital. 101, 815-824.

Evans, O. R. \& Lin, W. (2000). Inorg. Chem. 39, 2189-2198.
Evans, O. R., Wang, Z., Xiong, R.-G., Foxman, B. M. \& Lin, W. (1999). Inorg. Chem. 38, 2969-2973.
Evans, O. R., Xiong, R.-G., Wang, Z., Wong, G. K. \& Lin, W. (1999). Angew. Chem. Int. Ed. Engl. 38, 536-538.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 171-172.
Hooft, R. (1998). COLLECT Software. Nonius BV, Delft, The Netherlands.
Lin, W., Evans, O. R., Xiong, R.-G. \& Wang, Z. (1998). J. Am. Chem. Soc. 120, 13272-13273.
Liu, Q., Wei, Y., Wang, W. \& Zhang, S. (1999). Acta Cryst. C55, IUC9900127.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1761-1762.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XPREP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Waizumi, K., Takuno, M., Fukushima, N. \& Masuda, H. (1998). J. Coord. Chem. 44, 269-279.

